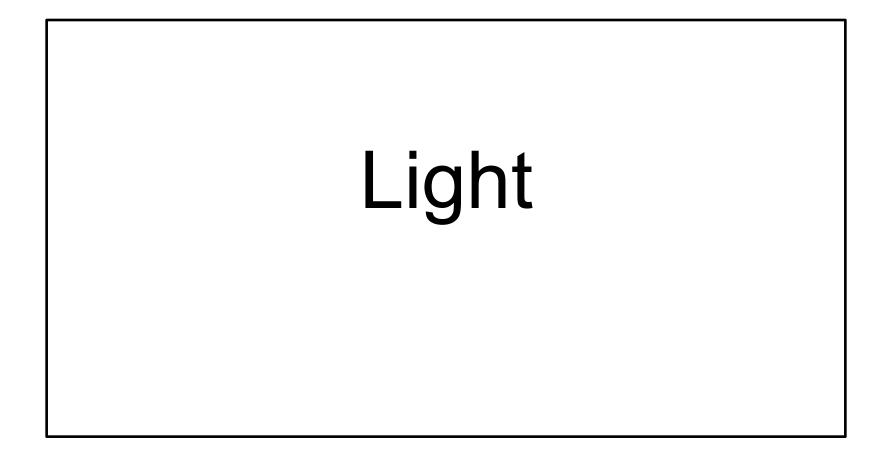
Low Vision Lighting: Its Important But How Important?

Gregory L. Goodrich, Ph.D. Vision Rehabilitation Research Consultant

> AERBVI Conference 2015 Norfolk, VA

Disclaimer & Acknowledgement

- I will speak about the LuxIQ from Jasper Ridge. I am a research consultant for Jasper Ridge.
- My research was approved by and conducted in accordance with regulations of VA Palo Alto Research Service and the VA/ Stanford Institutional Review Board.
- Appreciation to Peter Borden, Ph.D. for content used in this presentation.



Light is really important

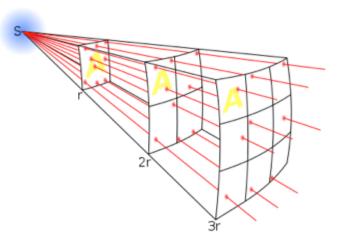
There is an "optimum"

What is "optimum" lighting?

www.freshnessmag.com

- Optimum lighting is important in maximizing visual function
 - For many, but not all, low vision individuals "more" light is better
 - may add ~2 lines of visual acuity
 - May improve the benefit of optical prescription
- Optimum lighting varies from person to person
 - Not simply "more" light
 - Brightness not only factor; color, color temperature, glare, etc.
- As with refractions, lighting can be measured and quantified
 - Need calibrated, fast, easily used measurement tool

The "Curse" of Terminology

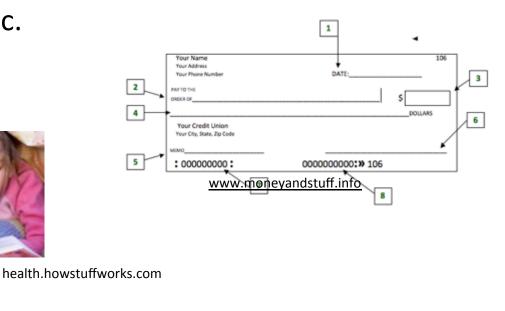

- I didn't really understand lighting until I began to understand the terminology.
- Turns out it isn't all that difficult once you have some clarification.

.ux	?????			
Lumens	? Volts			
WATTS	Candelas			
FOOT CANDLES				
??????	Amps			

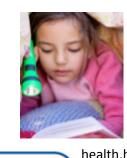
Who needs better lighting?

- Normally sighted
 - Reading in dim light
 - Threading needle
 - Working in tight spaces
 - Etc.
- People with visual impairments
 - Most with central field loss
 - Most with peripheral field loss
 - Some with traumatic brain injury
- Better light involves brightness, color, glare, distribution

www.e-education.psu.edu

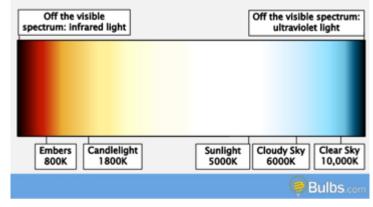


Where do we need optimized lighting?


- Reading pill bottles
- Reading for work, school, & enjoyment
- Cooking & hobbies

- Finances writing checks & reading bills
- Etc.

AER


sciation for Education and Rehabilitation of the Blind and Visually Impaired www.pinterest.com

Task vs Ambient Lighting

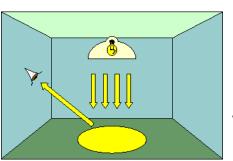
Task lighting

- **Higher intensity**
- Local lighting
- Optimized for acuity, task,
- duration, comfort
- Ambient lighting
 - Lower intensity
 - Broad area lighting
 - Optimized for safety, mood
- My focus is on task lighting

Kelvin Scale: Natural

pt.slideshare.net

Illuminance vs. Luminance


- Illuminance: light hitting the page lux (lumens/m²) or foot-candles; 1 foot candle = 10 lux
 - Usually diminishes with distance and angle from source
 - Independent of surface properties (color, finish, texture)
- Luminance: light coming from the page (candelas per square meter, cd/m²)

www.klightlab.com

<u>Depends on surface properties such as texture, reflectance</u>.

www.new-learn.info

Luminance and illuminance in vision testing

Luminance: Built-in light

Illuminance – Reflected light

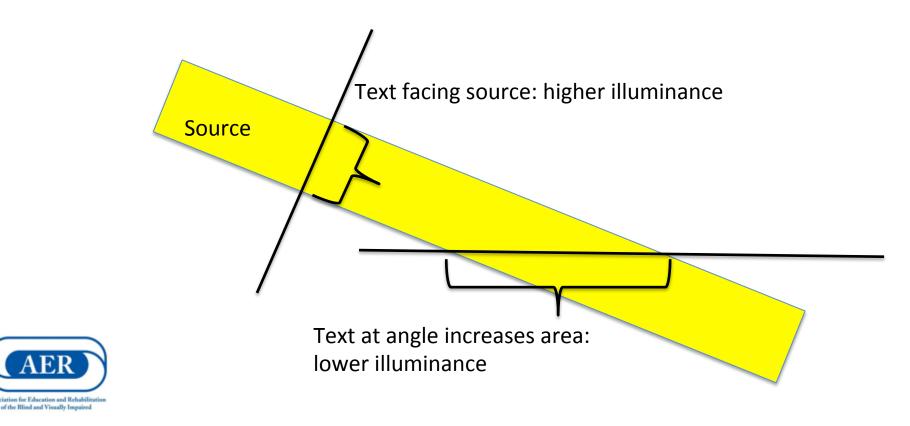
Relating luminance and illuminance

- As a simple rule of thumb,
- For a reflective matte surface, 1 candela/m² ≈ 3 lux (3 lumens/m²)
- For example, a back-lit eye chart emits 200 cd/m². This is equivalent to the illuminance on a white matte eye chart in a 600 lux exam room.

Common illuminance values

Starlight .0001 lux Full moon $.27 - 1 \, \text{lux}$ General residential lighting $50 - 100 \, \text{lux}$ 100 lux Very dark overcast day Residential dining room $100 - 200 \, \text{lux}$ 200 – 500 lux **Residential reading** www.ltlmagazine.com Classroom, bright lit exam room 500 – 1,000 lux 1,000 lux **Overcast day** 10,000 – 100,000 lux Full daylight

Measurement of lighting



- Light meters measure illuminance in either
 - Lux, or
 - Footcandles
- Relatively inexpensive
 - ~ \$30.00 and up

Illuminance and angle

• Illuminance depends on angle between light source and reflecting surface. The lower the angle the lower the illuminance.

Key properties: Color

- Color arises from the mix of wavelengths in the source light
- Monochromatic light has one wavelength:
 - Green = ~527 nm
 - Red = ~630 nm
- Mixing colors creates hues (More on this later)

Key properties: Contrast

- Contrast = difference between background and text
- 100% contrast is pure black on pure white
- Eye charts often have 80% contrast while many reading materials have low contrast
- Contrast is a property of the <u>medium</u> <u>lighting or filters do</u> <u>not change it</u>.

The Daily
Martians invade earth

Contrast

• Common definition is:

$$Contrast = \frac{R_{MAX} - R_{MIN}}{R_{MAX} + R_{MIN}}$$

- Perfectly white page with black test has contrast of 1 or 100%
- A newspaper might have dark grey print (75% reflection) on light grey paper (15%) yielding a contrast of 67%
- Lighting or filters do not change contrast!

Key properties: Glare

- Unwanted light from window, lamp, reflections, or the page itself.
- Glare can be difficult to control when providing bright light.

Glare: Reduces perceived contrast

 Lighting does not change actual contrast, but reduces retinal (perceived) contrast

AER

ciation for Education and Rehabilit of the Blind and Visually Impaired

Glare: Example

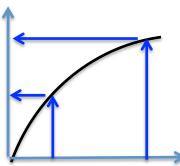
Clock on night stand without (clock face visible)

And with bright glare source (clock face not visible)

A way to reduce glare

Brightness: Steven's Power Law

The eye's sensation of higher intensity decreases as the intensity increases.


Only large changes in brightness are effective. This may increase glare unless lighting is carefully controlled. Sensation

Example:

3-way bulb with 50, 100 and 150 watts output.

The difference, 50 watts, is the same between each setting.

0 to 50 watts is more noticeable than 100 to 150 watts.

Intensity

Schwartz, Visual Perception, 4th edition

Warm and cool white

"Warm" has more red

"Cool" has more blue

Lights have a (non-intuitive) color temperature (° Kelvin)

• The higher the temperature the cooler the light color)

	•	Temperature	Source
	ľ.	1,700 K	Match flame
		1,850 K	Candle flame, sunset/sunrise
		2,700–3,300 K	Incandescent lamps
I Warmer	3,000 K	Soft White compact fluorescent lamps	
	3,200 K	Studio lamps, photofloods, etc.	
Cooler 3,350		3,350 K	Studio "CP" light
		4,100–4,150 K	Moonlight, ^[2] xenon arc lamp
		5,000 K	Horizon daylight
		5,000 K	tubular fluorescent lamps or Cool White/Daylight compact fluorescent
		5,500–6,000 K	Vertical daylight, electronic flash
	L .	6,500 K	Daylight, overcast
		5,500–10,500 K	LCD or CRT screen
DD.	2	15,000–27,000 K	Clear blue poleward sky

AMD and more light

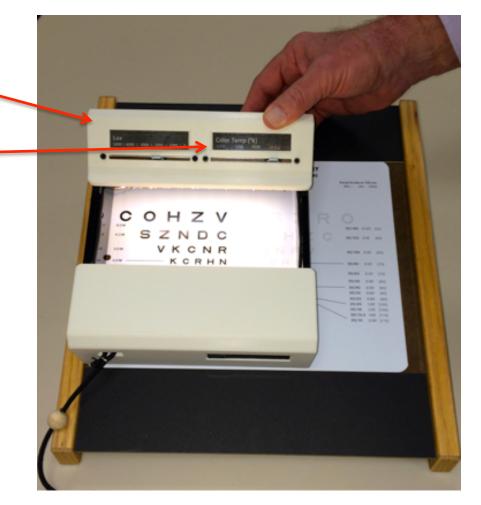
- Most normally sighted folk reach peak acuity at 500 lux (normal task lighting).**
- AMD patients may need >4X or 2000 lux to achieve peak acuity.
- Most prefer brighter light

** More about this later – lighting to maximize acuity and preferred lighting for reading are different.

WBRC Study

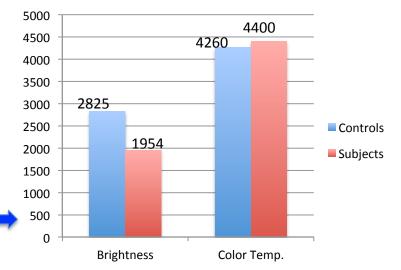
- Designed to compare visual acuity (high and low contrast) for normals and low vision patients
- Compared acuity measured in the clinic with that obtained using the LuxIQ
 - Subjects set:
 - Brightness
 - Color temperature
- Counterbalanced order of presentation

WBRC Study participants


	Controls (N = 10)	Subjects N = 30)
Mean Age	55.5 yrs. (40 - 68)	70.7 yrs. (51-90) *
Working Distance	44.7 in. (32-56 cm)	26.3 in. (12-45 cm) **

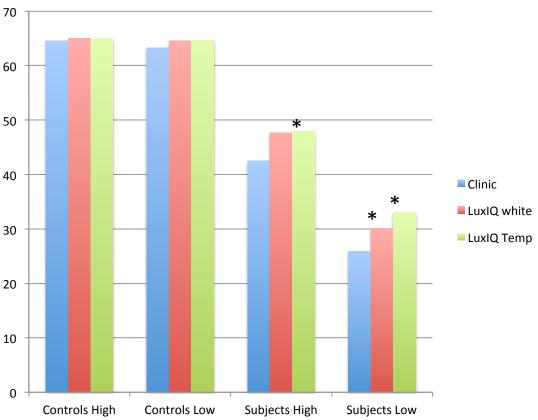
- Controls significantly younger than subjects
- Controls used significantly greater working distances
- Subjects had variety of pathologies
 - AMD = 8
 - Glaucoma = 8
 - Other TBI (hemianopia), NAION, diabetic retinopathy, trauma/TBI, interstitial keratitis, CRAO, and macular edema
- Controls preferred greater brightness than subjects
- Subjects used best near correction for all conditions

Lighting measurement tools: LuxIQ


- Left slider controls brightness
 - 0 to 5,000 lux
- Right slider controls color temperature
 - 2,700 to 6,300 °K
- Sliders move left to right to increase brightness/color temperature
- Readings from scales above sliders
- Colenbrander high/low contrast near acuity chart
- Recorded number of letters read

Controlled study of brightness and color temperature

- Controls preferred significantly brighter light
 - Controls: 500 5000 lux
 - Subjects: 700 5000 lux
- No significant difference between normal and control populations on color temp.
 - Controls: 2700 5500 °K
 - Subjects: 2700 6500 °K



500 lux = value where normally sighted reach asymptote for visual acuity

Number of letters read

- Maximum letters = 65
- No significant change for controls
- Compared to clinic illumination subjects read significantly greater number of characters on both high and low contrast charts
- Gain varied by subject from no additional letters to over 2 lines

Study Conclusions

- Both controls and subjects preferred bright light (controls significantly more)
- Controls and subjects very similar in preferred color temperature
- Brightness and color temperature significantly improved number of letters read on high contrast for subjects but not controls
- Brightness and color temperature each significantly improved number of letters read on low contrast for subjects but not controls
- Optimized lighting enhanced effectiveness of low vision prescription
- Low vision individuals using optimized lighting read smaller print;
 optimized lighting = magnification

Caveats

- Not all subjects preferred or benefited from brighter light
 - Even among AMD patients who are thought to need more light
- Preference for lighting is individual for both controls and low vision subjects
- Individual measurement and prescription of lighting should improve low vision individual's performance on near tasks

Related studies

- Rotruck and Fletcher (ARVO 2015)
 - POAG patients prefer significantly less light than AMD patients
 - POAG 2,345 lux (±922); AMD 4,289 lux (±713)
 - Optimum lighting significantly improves acuity

Room (5	00 lux)	Optimum
Low contrast	6.6 M	5.2 M
Hi contrast	1.8 M	1.2 M

Prescribing lighting

 Current standard is trial and error lacking systematic, calibrated basis

Swapping bulbs ...or lamps LuxIQ offers a calibrated option

 It has been shown to improve acuity and may improve visual comfort for low vision readers.

•

Next steps

- I'm a card carrying researcher so of course I'm going to tell you more research is needed
 - Does optimum lighting improve reading duration?
 - Does improvement translate to other tasks?
 - Studies done are with adults, does the benefit translate to children?
 - Study with children with CVI starting up at California School for the Blind (Marasch, Lueck, & Goodrich)
 - LuxIQ2 may provide calibrated tool for prescribing tints/filters?

Research Findings References (available at www.jasperridge.net)

- AAO 2013
 - <u>Quantifying Patient Lighting Needs to Improve Low Vision Clinical</u>
 <u>Practice and Patient Performance</u> *Gregory L. Goodrich, Shanida Ingalla, Megan Dolkas*
- Envision 2014
 - <u>Is Low Vision Lighting Coming of Age</u> Gregory L. Goodrich, Donald Fletcher, Karen Kendrick, Faydim Rassamdana
 - Measuring and prescribing preferred light intensity and color Peter Borden, Michele Klein
- ARVO 2015
 - Patients with AMD and POAG may require different lighting to maximize visual acuity - Jill Rotruck, Don Fletcher; Laura Walker
 - <u>Functional Impact of Task Lighting on Reading with Low</u> Vision *Tony A. Succar, Laura Walker, Karen Kendrick, Andra Mies, Donald C. Fletcher*

Questions?

Thank you!

Contact Information: Greg.Goodrich@yahoo.com

